返回首页 公开课 麻省理工公开课:线性代数

简介:麻省理工(MIT)公开课提供,涵盖从入门到高阶的全部教学内容。本课程为:线性代数(linear algebra),由美国数学家威廉·吉尔伯特·斯特朗 (Gilbert Strang) 讲述。

Lec 1 | MIT 18.06 Linear Algebra, Spring 2005
48012
2025-04-27
2. Elimination with Matrices.
14726
2025-04-27
3. Multiplication and Inverse Matrices
7157
2025-04-27
Lec 4 | MIT 18.06 Linear Algebra, Spring 2005
4757
2025-04-27
5. Transposes, Permutations, Spaces R^n
3150
2025-04-27
6. Column Space and Nullspace
2395
2025-04-27
7. Solving Ax = 0: Pivot Variables, Special Solutions
1699
2025-04-27
8. Solving Ax = b: Row Reduced Form R
1438
2025-04-27
9. Independence, Basis, and Dimension
1644
2025-04-27
10. The Four Fundamental Subspaces
1147
2025-04-27
11. Matrix Spaces; Rank 1; Small World Graphs
1008
2025-04-27
12. Graphs, Networks, Incidence Matrices
941
2025-04-27
13. Quiz 1 Review
817
2025-04-27
14. Orthogonal Vectors and Subspaces
854
2025-04-27
15. Projections onto Subspaces
847
2025-04-27
16. Projection Matrices and Least Squares
701
2025-04-27
Lec 17 | MIT 18.06 Linear Algebra, Spring 2005
618
2025-04-27
18. Properties of Determinants
587
2025-04-27
19. Determinant Formulas and Cofactors
649
2025-04-27
20. Cramer's Rule, Inverse Matrix, and Volume
669
2025-04-27
Lec 21 | MIT 18.06 Linear Algebra, Spring 2005
533
2025-04-27
22. Diagonalization and Powers of A
578
2025-04-27
23. Differential Equations and exp(At)
530
2025-04-27
Lec 24 | MIT 18.06 Linear Algebra, Spring 2005
378
2025-04-27
Lec 24b | MIT 18.06 Linear Algebra, Spring 2005
369
2025-04-27
Lec 25 | MIT 18.06 Linear Algebra, Spring 2005
257
2025-04-27
26. Complex Matrices; Fast Fourier Transform
315
2025-04-27
27. Positive Definite Matrices and Minima
354
2025-04-28
Lec 28 | MIT 18.06 Linear Algebra, Spring 2005
285
2025-04-28
Lec 29 | MIT 18.06 Linear Algebra, Spring 2005
247
2025-04-28